Differentiable and Complex Dynamics of Several Variables - Mathematics and Its Applications - Pei-chu Hu - Böcker - Springer - 9789048152469 - 5 december 2010
Om omslag och titel inte matchar är det titeln som gäller

Differentiable and Complex Dynamics of Several Variables - Mathematics and Its Applications 1st Ed. Softcover of Orig. Ed. 1999 edition

Pris
SEK 549

Beställningsvara

Förväntad leverans 12 - 20 jan 2026
Julklappar kan bytas fram till 31:e januari
Lägg till din iMusic-önskelista
eller

Finns även som:

The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR. , and if the force f is supposed to be a function of x only, Newton's Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v = :i; = ~~ E IR. . Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = - \lU of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x,v) = 2'm(v,v) - U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation ~~ are used as the variables, the Euler-Lagrange equation can be If the momenta y written as . 8L y= 8x' Further, W. R.


342 pages, biography

Media Böcker     Pocketbok   (Bok med mjukt omslag och limmad rygg)
Releasedatum 5 december 2010
ISBN13 9789048152469
Utgivare Springer
Antal sidor 342
Mått 155 × 235 × 18 mm   ·   494 g
Språk Engelska  

Fler produkter med Pei-chu Hu

Visa alla