Similarity Function with Temporal Factor in Collaborative Filtering: Data Mining - Chhavi Rana - Böcker - LAP LAMBERT Academic Publishing - 9783659179952 - 29 juli 2012
Om omslag och titel inte matchar är det titeln som gäller

Similarity Function with Temporal Factor in Collaborative Filtering: Data Mining

Pris
SEK 469

Beställningsvara

Förväntad leverans 5 - 13 jan 2026
Julklappar kan bytas fram till 31:e januari
Lägg till din iMusic-önskelista
eller

Similarity function is the key to accuracy of collaborative filtering algorithms. Adding a time factor to it addresses the problem of handling the web data efficiently as it is highly dynamic in nature. The data used in collaborative filtering algorithms is collected over as long period of time, in the form of feedbacks, clicks, etc. The interest of user or popularity of an item tends to change as new seasons, moods or festivals. The similarity function with temporal factor can efficiently handle the dynamics of web data as it captures and assigns weightage to the data. More recent data is given more weightage when similarity is calculated. in this way, the recent trends and older and obsolete data values are discarded when new unobserved items are predicted using collaborative filtering algorithms. Hence, better results and more accuracy.

Media Böcker     Pocketbok   (Bok med mjukt omslag och limmad rygg)
Releasedatum 29 juli 2012
ISBN13 9783659179952
Utgivare LAP LAMBERT Academic Publishing
Antal sidor 56
Mått 150 × 3 × 226 mm   ·   102 g
Språk Tyska