Sparse Learning Under Regularization Framework: Theory and Applications - Michael R. Lyu - Böcker - LAP LAMBERT Academic Publishing - 9783844330304 - 15 april 2011
Om omslag och titel inte matchar är det titeln som gäller

Sparse Learning Under Regularization Framework: Theory and Applications

Pris
SEK 559

Beställningsvara

Förväntad leverans 31 dec - 8 jan 2026
Julklappar kan bytas fram till 31:e januari
Lägg till din iMusic-önskelista
eller

Regularization is a dominant theme in machine learning and statistics due to its prominent ability in providing an intuitive and principled tool for learning from high-dimensional data. As large-scale learning applications become popular, developing efficient algorithms and parsimonious models become promising and necessary for these applications. Aiming at solving large-scale learning problems, this book tackles the key research problems ranging from feature selection to learning with mixed unlabeled data and learning data similarity representation. More specifically, we focus on the problems in three areas: online learning, semi-supervised learning, and multiple kernel learning. The proposed models can be applied in various applications, including marketing analysis, bioinformatics, pattern recognition, etc.

Media Böcker     Pocketbok   (Bok med mjukt omslag och limmad rygg)
Releasedatum 15 april 2011
ISBN13 9783844330304
Utgivare LAP LAMBERT Academic Publishing
Antal sidor 152
Mått 226 × 9 × 150 mm   ·   244 g
Språk Tyska  

Fler produkter med Michael R. Lyu

Visa alla