Bayesian Stochastic Volatility Models: Auxiliary Variable Methods for Stochastic Volatility and Other Time-varying Volatility Models - Stefanos Giakoumatos - Böcker - LAP LAMBERT Academic Publishing - 9783838386331 - 26 augusti 2010
Om omslag och titel inte matchar är det titeln som gäller

Bayesian Stochastic Volatility Models: Auxiliary Variable Methods for Stochastic Volatility and Other Time-varying Volatility Models

Pris
SEK 729

Beställningsvara

Förväntad leverans 7 - 15 jan 2026
Julklappar kan bytas fram till 31:e januari
Lägg till din iMusic-önskelista
eller

The phenomenon of changing variance and covariance is often encountered in financial time series. As a result, during the last years researchers focused on the time-varying volatility models. These models are able to describe the main characteristics of the financial data such as the volatility clustering. In addition, the development of the Markov Chain Monte Carlo Techniques (MCMC) provides a powerful tool for the estimation of the parameters of the time-varying volatility models, in the context of Bayesian analysis. In this thesis, we adopt the Bayesian inference and we propose easy-to-apply MCMC algorithms for a variety of time-varying volatility models. We use a recent development in the context of the MCMC techniques, the Auxiliary variable sampler. This technique enables us to construct MCMC algorithms, which only consist of Gibbs steps. We propose new MCMC algorithms for many univariate and multivariate models. Furthermore, we apply the proposed MCMC algorithms to real data and compare the above models based on their predictive distribution

Media Böcker     Pocketbok   (Bok med mjukt omslag och limmad rygg)
Releasedatum 26 augusti 2010
ISBN13 9783838386331
Utgivare LAP LAMBERT Academic Publishing
Antal sidor 240
Mått 150 × 14 × 226 mm   ·   358 g
Språk Engelska