Towards Ultra-high Speed Online Network Traffic Classification: Enhanced with Machine Learning Algorithms and Openflow Accelerators - Sanping Li - Böcker - LAP LAMBERT Academic Publishing - 9783659370489 - 22 mars 2013
Om omslag och titel inte matchar är det titeln som gäller

Towards Ultra-high Speed Online Network Traffic Classification: Enhanced with Machine Learning Algorithms and Openflow Accelerators

Pris
SEK 599

Beställningsvara

Förväntad leverans 7 - 15 jan 2026
Julklappar kan bytas fram till 31:e januari
Lägg till din iMusic-önskelista
eller

Ultra-high speed networks require real-time traffic classification in order to identify the presence of certain network applications and utilize network resources to ensure these applications run smoothly. Machine learning provides a promising alternative for traffic classification based on statistical flow features, avoiding raising privacy and security concerns. Accurate traffic classification, however, is an expensive procedure that can increase networking latency and decrease bandwidth. As an open specification, the OpenFlow protocol provides the flexibility of programmable flow processing to perform more complicated statistical analysis. So, enhanced with machine learning algorithms and OpenFlow extensions, my research focuses on the design and implementation of traffic classification system that accurately classifies traffic without affecting the latency or bandwidth of network.

Media Böcker     Pocketbok   (Bok med mjukt omslag och limmad rygg)
Releasedatum 22 mars 2013
ISBN13 9783659370489
Utgivare LAP LAMBERT Academic Publishing
Antal sidor 200
Mått 150 × 12 × 226 mm   ·   316 g
Språk Tyska