Deep Learning Architectures: A Mathematical Approach - Springer Series in the Data Sciences - Ovidiu Calin - Böcker - Springer Nature Switzerland AG - 9783030367237 - 14 februari 2021
Om omslag och titel inte matchar är det titeln som gäller

Deep Learning Architectures: A Mathematical Approach - Springer Series in the Data Sciences 1st ed. 2020 edition

Pris
SEK 689

Beställningsvara

Förväntad leverans 31 dec - 8 jan 2026
Julklappar kan bytas fram till 31:e januari
Lägg till din iMusic-önskelista
eller

Finns även som:

This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.

This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates.  In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.

 

 



760 pages, 35 Illustrations, color; 172 Illustrations, black and white; XXX, 760 p. 207 illus., 35 i

Media Böcker     Pocketbok   (Bok med mjukt omslag och limmad rygg)
Releasedatum 14 februari 2021
ISBN13 9783030367237
Utgivare Springer Nature Switzerland AG
Antal sidor 760
Mått 176 × 254 × 48 mm   ·   1,45 kg
Språk Tyska  

Fler produkter med Ovidiu Calin

Visa alla